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1. 1Introduction

Before introducing and discussing our results, let us introduce some notation
and definitions which are used throughout the paper. (T,A,m) denotes an atomless
separable o-finite measure space and (Q,F,P) a probability space.

W= {W(A): A ¢ Ao} is a white noise random measure on AO = {A ¢ A: m(A) < w}
with control measure m, i.e. W is a mean-zero Gaussian stochastic process in-
dexed by sets from AO and with covariance function EW(A)W(B) = m(AnB).

¢ = {5(t): t € T} is a measurable real valued stochastic process such that

2
[ Ele(t) | “m(dt) < =,
T
Let {an} be a CONS in (real) LZ(T) and

a =a (a) = { a(c,u»¢n(t>m(dt).

Clearly

£(t,) = [ a_ (w9 () in L5(T x ).
n

A stochastic integral ng*dw is defined by

N
(1.1) JE*dW = lim § a_ [¢ (£)dw(r),
T N2> n=1 T

2 I'd
provided the limit exists in L (§{) and does not depend on the choice of a

N

CONS - .
h an
This is a very attractive definition of a stochastic integral that does not

require any special kind of measurability of £ and the parameter set can be

arbitrary.
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1.1

A stochastic integral of this type has been defined and studied by Balkan
{1], Kuo and Rusek [6] and Ogawa [8], independently. Ogawa [8] has proven that
Ll-convergence in (1.1) with respect to the trigonometric basis {¢n} implies
similar convergence to the same limit with respect to Haar basis. Balkan [1]
and Kuo and Rusek [6] studied the case when £(t), t ¢ T is a Wiener Lz-functional
of W, i.e. for every t ¢ T, £(t) is Fw = o{W(A): A € AO}—measurable. Kuo and
Rusek [6] (cf. also [7]) using Hida's white noise analysis studied sufficient
conditions for the convergence in (l.1) and proved that under certain assump-
tions fé&*dw can be evaluated utilizing the Fisk-Stratonovich procedure.

Our approach is based on some classical results from the theory of nuclear
operators on Hilbert spaces and on the Ito-Wiener expansion of LZ-Wiener func-~
tionals. In Section 2, we establish characterization of integral operators with
a summable trxe, which is basic for this paper. In Section 3, we study special
cases of integrands. We show that if £ is a Gaussian process subordinate to W,
then f&*dw is a quadratic form in independent standard normal r.v.'s as it was
studied by Varberg [10]. A necessary and sufficient condition for the existence
of f&*dw when £ lies in the p-th homogeneous chaos is given in Theorem 3.3. A
general sufficient condition for the integrability of £ is given in Theorem 4.1.
In Section 5, we investigate the relationship between fé&*dw and the Fisk-
Stratonovich integral. Theorem 5.8 provides sufficient condition for the exist-
ence and equality of both integrals. This condition, which is given in terms
of appropriate Sobolev-space norms, is of the same nature as the one presented
in [6], but differs in the value of a coefficient ((p + 1)! instead of p! in
[6]). Theorem 5.9 gives a quite simple condition which guarantees the evalua-
tion of fé&*dw as a limit of corresponding Stiltjes sums.

Throughout this paper the following notations are used:
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~ L°(T") := L°(T,.®,A.,.® m,),
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where A, = A, m, = m;
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Ip(g) = {...{ g8(s sunes sp)dW(sl)...dW(sp)

X p-L{mes

is the p-tuple It8-diener integral of g ¢ LZ(TP); when (T,m) is the unit interval
with Lebesgue measure, then dW is replaced by dB, where B(t), t ¢ [0,1] is a stand-
St ard Brownian motion; féé(t)dB(t) is the usual Itd integral of a nonanticipating
process &(t), t ¢ [0,1]; fé&(t)odB(t) denotes the Fisk-Stratonovich integral

(cf. [4], p. 101).
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2. 1Integral operators with a summable trace

2,

Let H be a real separable Hilbert space, and k: T H be a measurable

2
mapping such that [ 5 llk(s,t)|l “dm(s)dm(t) < =, Define an operator

2 2 T
K:L%(T)» L2(T;H) by

(2.1) (K¢ (t) = [o(s)k(s,t)dm(s), ¢ « L2(T).
T

We say that K has a swummable trace if for every CONS {®n} c LZ(T) the

series

(2.2) ) ¢ ()k(s,t)¢_(t)dm(s)dm(t)

n T2

converges in H.

Let k be the symmetrization of k, i.e.

E(s,t) = Z-l{k(s,t) + k(t,s)}, s,t < T,

and let E:LZ(T) d LZ(T;H) be the corresponding integral operator with kernel k.

Note that K has a summable trace if and only if K possesses this property and
the limit in (2.2) is the same if k is replaced by E.
Proposition 2.1. :in operaz-r K given by '°.:) has a swnmable trace if and

. . - + ~ 2 : - - . 3
nm o f for coee hoo WO fhe Dreritor Kh:L (TY ~ L7 (1) defined by

~ . -~ 2
(Kh;)(t) = Ji(s) kis,t),h>dm(s). - (D,
T

L8 nuclein,

o
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2.2

Proof. Let {¢n} be a CONS in LZ(T) and put hn = f 2¢)n(s)k(s,t)¢n(t)dm(s)dm(t).
T
Assume that K has a summable trace. Since any permutation of {¢n} is also a

CONS in LZ(T), Znhn converges unconditionally in H. Hence for every h € H

<~ > = > <
(2.3) LI<Kio oo > = Tl<h ,h>| <=,
n n
Since Eh is also a selfadjoint operator, Eh is nuclear (cf. e.g. [2], Theorem
3.4.3).

Conversely, assume Eh is a nuclear operator for every h ¢ H. Thus

= . 2
Zn[<kh¢n,¢n>| < o for every CONS {¢n} in L°(T), and by (2.3) Znhn converges
weakly unconditionally in H. Since H is weakly complete, Znhn converges

strongly in H; cf. e.g. [3], IL.5.

Corollary 2.2. I[f K has a swmmable trace, then h - Trace(Eh) 18 1 linerr

functional on H satisfying the equality

<h0,h> = Trace (Kh)’ heH,

where hg is the limit of the series (2.2) for some (any) CONS {¢n} in LZ(T).

Lence the trace of K, demoted by trk and given by the series

trk := ) f ¢n(s)k(s,t)¢n(t)dm(s)dm(c)

n .2
T

e is well-defined, i.e. does not depend on the choice of a CONS {¢n} in LZ(T).
L.": .
.
N, -
o
-
o
4
.
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;:: Proof. Since Z f = trf (cf. Corollary 2.2), the series I f converges

e —_— n nn n nn

- unconditionally. Therefor f 2

iy y ore Zm,n mnXan converges unconditionally in L°(Q)

- (cf. [10]), and
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3. Integration in some special cases
A. Integrals of subordinate Gaussian processes.
Let

(3.1) £(t) = [f(s,t)dM(s) = I, (£(*,1)), teT,

T

where f belongs to Lz(Tz). Let {¢n} be a CONS in LZ(T) and consider the ortho-

normal expansion of f in L2(T2):

f(s,t) = z f
m,n

¢

mn m

()o_(t),

and the i.i.d. standard normal r.v.'s X = fT¢n(s)dW(s).

Proposition 3.1. Let £ be given by (3.1). Then fTE*dw exists and

y £ XX
omnmmn
m,n

Jexaw = a.s.
T

provided the operator F:LZ(T) > LZ(T) defined by

(FO) (t) = [o(s)E(s,t)dm(s), ® € LE(T),
T

has a swmable trace.

Note that in this case f&*dw coincides with the double stochastic integral
of f defined by Varberg {10], which is different from the double It3~Wiener

integral Iz(f).
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A~ ; N o
1O XX =1lim ) () £ X)X

N w,n ™0 mn o =] pey BM DD
N .
( N

- = lim ] (fE(e)o_(t)dm(t))X_

‘..: Nax pn=1 T

= [e(e)*du(e). (]

. T

s 1 2

. Example 3.2. [B*dB = B“(1)/2.

- 0

v Proof. Indeed, B(t) = félD(s,t)dB(s), where D = {(s,t): 0 < s <t < 1},
i and F¢ = 2_]'<l[0 l],¢>1[0 1] is nuclear as a one-dimensional projection, where
f F is the symmetrization of F. Also
L

- = 2<F > = < >< ]

.-, fmn + fnm 2 Fq’m"% 1[0,l]’¢m l[0,1]'¢n>

Therefore, by Proposition 3.1
.
o 1 o
- [B*dB = 2" 1im § (£ + £ )X X
0 N+ m,nsN
B -
1, N 2 -12

= 27 1im( § 1o l],cpn>xn) = 277B°(1). 0
p N>® n=1 >
-

j B. Integrals of multiple Ito-Wiener integrals.

‘j Let

s (3.2) g(t) = f f(sl,---, sp,t)dw(sl)--. W(sp) = Ip(f(',t)),

P

2, ptl . o
= t - T, where f = f(sl""’ sp,t) belongs to L™ (T ) and is symmetric in
':j Spaeee sp for each fixed t. We have for every t « T
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lecoll?, = pl£C-,0)?
L2(9) ILZ(Tp+l)

and

2
e )f = pY|| :
L2(1x0) L2 (Pl
, 2 2,.p-1 .
. Since for a.e. (s,t) ¢ T™, f(*,s,t) ¢ L°(T ), the mapping

F:15(1) > L2(1;L%(1P 1)) given by

(3.3) (FO)(t) = [o(s)E(*,s,t)dm(s), ¢ e L2(T),
T

is a well-defined linear continuous operator. trf will stand for the trace of

F, provided F has a summable trace (cf. Corollary 2.2). Note that in this case

2, p-1
trf is an element of L (T% 7).

Theorem 3.3. Let & be given by (3.2). Then ng*dw exists if and only if

the operator F defined by (3.3) has a swmmable trace. In this case
Fx =
{g W= I (D) + pL_ (erf).

Proof. We have

[\
]

JE()e (t)dm(t)
T

1f:(ipf(sl,..., sp,t)dW(sl)...dW(SP))¢>n(t)dm(t)

Ip(gn),

where gn(sl,..., Sp) = fo(sl,..., sp,t)¢n(t)dm(t), and the interchange of the

EROL P P S . S I P

ATt T e e e

I T N AT .
D W PP SN WY SOl SRS R W




multiple Itd-Wiener and usual integration can be easily verified for simple

functions and extended to the general case by the usual approximation argument.

By Itd's recurrence formula (cf. [5], Thm. 2.2) we get

(3.4) a_ fqbndw

J I (e)T,(9.)

= Ip+l(gn ® ¢n) * pIp-l(hn)’

where (g ® ¢ )(ty,...n £ ) =g (Ejheey €0 (€ 1)) =

ptl

SECtpeees €500, ¢ ()% (6 L)) and

hn(sl""’ sp-l) = f2¢n(s)f(sl,..., sp_l,s,t)$n(t)dm(s)dm(t).
T
We observe now that ann ® ¢ converges to f in L (Tp+ ) and consequently
Zn1p+l(gn ® ¢n) converges to Ip+l(f) in L (). Therefore, in view of (3.4),
fg*dw exists if and only if Znhn converges in L2(Tp—l

) for every

CONS {¢n}c L2(T), which means that F has a summable trace. Since znhn = trf,

(3.4) completes the theorem. d
Example 3.4.
1 1
[H (B(t),t)*dB(t) = == H_ . (B(1),1) + 3 fu _1(B(t),t)de,

0

where Hn(x,t) is the Hermite polynomial of degree n defined by

2
Hn(x.t) - (- L)n X /2t 8 o X /2t, £ > 0.

X

n
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Proof. Indeed, Hn(B(t).t) = In(f('.t)), where

f(s - sn,t) = l[O,t]“(sl""’ sn). Therefore the symmetrization of f in

1’

the last two variables is given by

Il' if max{s,,..., s .} < max{s,t}
_ /2 1 n-1
f(sl,..., s _l,s,t) = ]

n 0 otherwise.

Let {¢n} be a CONS in L2[0,1]. We have

j=Rincs |

11
éé¢n(5)f(sl,---, s _1»S-t)9 (t)dsdt

) jjcp (s)f(sl,..., s _1»5:t)¢ (t)dsde

n 00
=2 5 ff¢ (S)l[max{s s l} < max{s,t}]¢ (t)dsdt
n 00 n= n
= 2- z ££¢ (s)(2 - 1[max{s Sn—l} > s]l[max{sl,..., sn_l}>t])¢n(t)dsdb

-1 2 2
g “lo,1% ~ <1[0,max{sl,---, sn_l}]’¢n> )

b

-1
(1 - max{sl,..., S -1

) =

in L2([O,l]n_l). Hence F has a summable trace and (trf)(sl,..., s -1

-1(1 - max{sl,..., s }). By Theorem 3.3 féHn(B(t),t)*dB(t) exists. To

n-1

evaluate this integral we observe that

) -1
L8 = L1 Ug s .\ sy 50) = (a4 UL, Uyg o)

(n+ D7H L (BO),D),
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3.6

A
and, since a multiple Ito-Wiener integral can be expressed by usual Itg
integral (cf. [5], Theorem 5.1),

-1

2 nIn_l(l - max{sl,..., s D

nIn_l(trf) n-1

n-1 52

S
é ...g (1 -s _,)eB(s))...dB(s__))dB(s_ )

[}
N

1
-ln! f
0

)

1
-1 ;
2 "a(n - 1)£(1 - s DB B(s )es  )dB(s )

-1 1
27" nf(1 - s)dX(s),
0

where X(s) = Hn_l(B(s),s) = (n - l)fzﬂn_z(B(u),u)dB(u). Integrating by parts

(note that sample paths of X are continuous) we get ?
|

1 1
f(1 ~ s)dX(s) = (1 - s)X(s)|é + [X(s)ds,
0 0

which yields nIn_l(trf) = Z-lnféx(s)ds, and completes the example.

Example 3.5. féB(l t)*dB(t) does not exist.

Proof. Indeed, B(1

t) = féf(s,t)dB(s), where f is a symmetric function
defined on [O,l]2 by
1 if s+t <1

f(s,t) =
0 otherwise.

By Theorem 3.3 and Proposition 2.1 it is sufficient to show that F = F is

&i{ not a nuclear operator on L2[0,1]: where
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1 1-t
(Fp)(t) = [f(s,t)d(s)ds = [ ¢(s)ds.
0 0

Consider the sequences {¢n} and {wn} of orthonormal functions in L2[0,]]:

/2

¢n(t) cos(2Tnt), n2>1, t ¢ [0,1],
and

V2 sin(2mn(l - t)).

v (o)

Then

1-¢

( f cos(2mns)ds)sin2mn(l - t)dt
0

O+

Y<F¢ ¥ > = 2§
n n n

-————1 = OO
- z 2tn
n

which shows that F is not a nuclear operator.
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4. Integration of general Wiener Lz-functionals

Throughout this section we shall assume that

3

2

e 2T x A8 Fnap).
According to the well-known ItS—Wiener theorem which says that

00
@ = 7 ek,
p=0 P
where Kp is the p-th homogeneous chaos, we may decompose {(t) into an ortho-

gonal series

0

E(t) = )

£ (t),
p=0 P

where Sp = {ip(t): t ¢ T} c Kp and £O(t) = E£(t). Since we can always choose

Ep as measurable processes belonging to LZ(T x i) we also have

8

(4.1) ¢= Jég, in LT 9.

Il t~1

p=0

A
Moreover, each Ep, p 2 1 can be represented by a multiple Ito-Wiener integral
(4.2) £ (t) =1 (f (+,t)), t eT
p P P

2, pt+il
where f = f (s,,..., s ,t) L (T is symmetric in s s for each
p p( 1 p! ¢ ( ) P

170

fixed t. We set fo(t) = Ef(t) and as usual IO(C) = ¢. Further ?p will denote

the symmetrization of fp in the last two variables. For every p 2 1 we define

an operator




«“as s u

4.2

I

Cind' '}
s« 2's's

P L2 » L3 L¢P Yy

T 4
«ts

- by

:

< 2

| (F ¢)(t) = [¢(s)f_(,s,t)dm(s), ¢ € L(T).

Voo P T p

) By Proposition 2.1, Fp has a summable trace if and only if for every

‘: h ¢ LZ(Tp-l) Fp hC LZ(T) > LZ(T) is a nuclear operator, where

+* y

~ > 2

: (F) () = Jo(s)<E (+,5,0),h(-)>dm(s), ¢ « LYD).

3 ’ T

B We define

': _ . 2,.p-1

o (4.3) Or,0- sup{lﬁp’h”r. bl < 1, h e LS(TP 7D},

F where HA||T denotes the nuclear norm of an operator A (cf. e.g. {2], p. 111).
s Note that (4.3) always makes sense, whether or not Fp has a summable trace.

Clearly, if UFPU < =, then Fp has a summable trace. The converse is also true

5 and this simply follows by the Closed Graph Theorem applied to the linear

:: mapping h » ?p h Finally, trfp will stand for the trace of FP, provided

. F [ < =,

: IF [

ﬁ: Theorem 4.1. Asswme that

Y

3 2 2 < 2 2
3 AC(E_n = el + 1 e+ DHIE ] +0F 07

2
SN P LA pel P 2(rPtl P

is finite. Then fTi*dW exists,

. - - - - 4 - - - - - - . - - - . B o
LI I R e T LN TP P 4 R T Y - e T e “n.- - -
R R T IR A IR R I T R
R S S S Ve N N T .
e A T A St e e e e e e e e T e Ty e
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. £ f
(4.4) {&*dw I, (£)) + 21[1 (£) + I,

p=
. 2
in L°(Q) and
lfexaw ], < v2acle D).
T L) P
Proof. We have
(4.5) Z J66 dnfo dW = ]S .,
n=1 T T p=0 P»
where
S = Z Je ¢ dmf¢ aw
PsN n=1 TP
. S 1, .
and the series zp=05p,N converges in L ({) for each N
By Theorem 3.3 for every p > 1,
4.6) S +> 1 f + pl trf
( ooy Log () + pI_ (erf )

and obviously S

(kp

o,N
. = +
-7y Sp,N Ip+1(fp.N) pIp-l
N
where f (tyene, £ ) =
p,N 1 p+l nel
and kp,N(sl""' sp_l) =

n=]l 2

in LZ(Q) as N » o,
> Il(fo). Using (3.4) we have
L <ty tprt)adg (>0 (e

Z /o (s)f o(sp0ees 8 148.0)0 (t)dm(s)dm(e).



..........

A
Hence ||fp’N|| < ”fPH and
e I = suplek om> = finfl < 3, b e L2PH)
p,N p,N’ ) -
¢ supllF L ¢ Il <1, h e L2} =]F [
- P p,h'T - p
Therefore, for every r > q > 1 and N 2 1
15s J2-107
S = (X, )+ pl (kg )lll
N +1 7 p,N 216
p=q P p=q T P P=
9 2 3 2
s 2y 1 e DS+ 2l pT (k]|
+1 : -
p=q P70 Pk p=q P71 PoN
r 2 r 2
s2) e+l 17+ 2] etk
= p,N p,N
P=q P=q
B 2 2
s2) e+ orlle lI°+ JF 1,
p=q P P
which shows that ]' H > 0 uniformly in N as q,r+»., Combining this
P=q p, (Q)
(4.5) and (4.6) Theorem 4.1 follows. a

Proposition 4.2. If § = Zg=oép, where q < =, then A({fp}) < » 15 also a

necessary condition for the existence of [E*dW.
Proof. Let Qp be the orthogonal projection of LZ(Q,FW,P) onto Kp. Using

(4.5) and (4.7) we get for each 0 < p < g

Q_(fg*dW) = limQ (2 [2¢_dm[o dW)
P N+ Pp=1T T
= 1lim §Q s,
N+ p= =0 °?

= 1i f
m{I (£, O+ (o + DI G

N

...........
........




e N YT TR O TN T WY WD ¥ W T MU W I N U TN T v YT ERN SR WON YT &N T e e e e s s e e e e ey e o B

jv‘-w—'-‘ S A aas lias sas jgs SO DA

4.5

= 1(E )+ (L+p) Lin T(k ).

Therefore {k converges in L2(Tp) for any orthonormal basis {¢n} S L2(T).

pt+l1, N N=1

This implies that F has a summable trace and HFP+1 J< =. 0

ptl
We do not know whether or not A({fp}) < = is necessary for the existence

of fi*dw in the general case. Nevertheless Theorem 4.1 gives a straightforward

way to establish the integrability of &£. Clearly the basic difficulty is in

getting an upper bound for UFPU. We now use certain Sobolev-space type con-

ditions on the fp's to upper bound ﬂFpﬂ.

Theorem 4.3. Let T = [0,1]) and m be Lebesgue measure on T. For p 21

ard o > 0 we define

2 2 -1-2a 2 -
UsCe ) = JiE_|l + [ Ju - ir (+,u) - f I,  dudv.
@ P P 2 (1P 12 L2 (1P)
Assume that for some o > 7
2 2 IS 2
= I f DUt (f
u e h = OHLZ('I') + pz (p + LN (F)

i1s finite. Then fé&*dB exists, (4.4) holds and
} {f_}
| [£*dB || < cu_({f_}),
o ey * P

where C depends only on a. .

Proof. Since H? Ho< |if || and U2(f ) < », the function
— p p o p

[0,1] » t ~ ?p(°,t) € L2([0,1]p) has absolutely convergent Fourier series,

i.e.

s .-'.-‘1 SR N AP ST ) oo e e e e

... -."w 3

‘.'.' d o . .‘.. - LR IR N
e e e e s e N e T o, : )

ERANES SRR

-

e e e & R S e
DY, {:L (.A".L 1‘1-I-L \_1‘A>.\L f..x.ll‘i' \k_n ._..-_AA" Bt dnd, .:‘ A“"A:.-".:q' B il LA-L;L
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4.6

~ 2mint
f (s.,..., 5 ,t) = c (s,y..., 8 e
p 1 P nzz p,n 1 P
in L2([0,1]p+l), where L eZMC || 9 < w3 c.f. [9], proof of Theorem 2.
meE P (0,11P)
Moreover

<C
nﬁz”“p,n” < QU (),

where C depends only on a. Put Xn(t) = e2ﬂint.

Let h ¢ LZ([O,l]p-l) and let {¢n} and {wn} be two sequences of orthonor-

mal functions in LZ[O,l]. We have

1 b

1 1
Foooou>] s *28),h(*)>0, .
§1<Fp IR z %l{)«: (+,8),h( )>¢J<s)dsll(f)xnme(t)dcl

[
[

IA
~1
—~

—
A

(g]

=]
~
.
-

/]
~—
>

=2
~

*
~

\%

N
o
[
~
3

N

e, IRl s cu¢e .

Hence ]ﬁ‘p’hHT < Cua(fp)[h|| which yields UFpU:sCUa(fp). Therefore

Az({fp}) < (C2 + l)Ui({fp}) and Theorem 4.1 completes the proof. 0

A sufficient condition for the integrability of £, stronger than that of
Theorem 4.3, can be written in terms of the covariance functions of the compo-

nent processes {Ep}.

Theorem 4.4. Let T = [0,1] and m be Lebesgue measure on T. If for some

N 1/2,

Sl _'.:
R ml:‘: o et T
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‘h‘-x'.._‘.n._ngng_!-n‘u Logl a Rt Sl oa e s P RS A
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Fas
~J

- 2

E|€ (u) -5 (v)|
P p .
1+20 - dudv}

2 pa 2
N = Jle |l + ] pllle_il + /
o 0" 2t

{
|
) p=1 P LZ(T‘Q) T2 lu - v]

‘» fintte, then féi*dB exists, (4.4) holds anc
1
Il JexaBl] < oN_(©),
0

where C devends cr.'. . 7.

Proof. Since

ElE (u) -¢ (v)]?
2 et

e +[ =
o] L2 (T‘Q) T2 lu -v l 1+2a
.2 -1-22 2
ptifiE + [olu-v! E Cou) = £ 0 dudv}
P L2(Tp+l) T2 p p L2(Tp)
and
~ i -1 ;
[<E, po¥2 ] 2 27AU<E you | + [<F ) oaeo D),
where F is defined similarly to F with f replaced by f , the inequality
p,h p,h P P

A({fpj) < Const Na(E) follows by the same arguments as those used in the proof

of Theorem 4.3.
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5. Evaluation of the integral by the Fisk-Stratonovich procedure

Throughout this section (T,m) will be the unit interval with Lebesgue
measure.,
Let £(t), t « [0,1] be a stochastic process. We say that a (generalized)

Fisk-Stratonovich integral of I exists if

(5.1)

w
(]
ne~13

-1
278 (e, gD + E(e)TB(e,) - B(e, )]

j=1

::jf converges in probability as mesh (7m) » 0, where 7 runs over all finite parti-
DR
F{lk tions O = tO < tl <...< tn =1 (n e N) of [0,1], and we write

o2 1
Yo - .

P Ji(t)edB(t) = lim S .

o 0 mesh(w)-0
2L
P

Note that we do not require in this definition any kind of measurability of ‘.
o

SO In this section we shall study the relationship between f&*dB and [£odB.
L e
Let £ be given by (4.1) and (4.2). Put D_ = {(s,t): 0<s<t<1} and
IR . + -

) D_= {(s,t): 07 t<s<1}, Define fp (fp, respectively) as the restriction of
- the function
P 2 2 -1
9. (0,117 = (s,6) > £ (+,5,8) & 17([0,11°7)

:f;‘ to D+ (D_, respectively).

NN
d - .

LT Proposition 5.1. Let £ = Zq=0£p, q < », be a mean-square continuous sto-
;::ﬁ wastie prozess.  Assume that for every 1 < p < q the functions f; and f; are
el
e 2ontinuous md rossese the extensions (also denoted by f; and f;, respectively)

— to  z2omi - wous funetions from ﬁ; (D, respectively) into Lz([O,llp-l). Ther.
- < " -

1. . .
fO;(t)odB(t) ertats an’
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5.2

f&(t)°dB(t) =L (£ ¢+ pil p+1 (f ) + pIp_l(gp)],
where
b +
°) =2 £ (-,s, f (-,s, ds.
gp() (J;[ p( s,8) + p( s,s)]ds

Proof. Clearly we may assume that £==£p, where 0<p<q. The case p=19
is obvious. Let p21 and let m= {Q),..., tn} be a partition of [0,1]. Using

A
Ito's recurrence formula we get

n
-1
= & F B - B .
S, jzlz [, ) + & (e TIB(E) - Ble, ]
g -1
(5. = .t NCLAIRNC
(5.2) j‘zlléz (£ (ot ) + £ (ot D) ([tJ ot )
) Ip+l(fp,ﬂ) * pIp-l(gp,ﬂ)
where
T o1
£ () = .g 20 ey )+ T (tgt 1
j=1 -1
and
-1 0 i +
g8, () =2 ) f (£ (st ) + £1€,s.1,))ds.
J_l J -1

2 2 -1, . .
Since the mapping [0,1] > (s,t) - fp(-,s,t) € L ([0.1]p ) is continuous
2
and uniformly bounded on D+UD_, the mapping [0,1] >t ~ fp(-,t) o L ([O,l]p)

2 +1
is continuous. Hence fp . fp in L ([0,1]p ) »- mesh (7) » 0. By the

y !

S - > -1
continuity of f; and fp on D_ and D_, respectively, g > By in L7(10,11°7)

as mesh () » 0. ‘
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- 5.3
.
- Proposition >.. . "0sc *hat ¢, satisfies the asswmptions of Proposition
B
;(%'(t)*dB(a. o+, Then
- 1 1
- [2(e)*dB(e) = [i(t)edBit).
b, (- 0 0
- . 2
o P oc”. We have fur a.e. (s,t) ¢ [0,1]
[ 5.3) T (e,s,t) = 2(£F (e, snt,8vt) + £ (+,svt,sAt)]
\ . p sy 2 p ’ [} p ) ’ ’
- . ) . . . 2
- and the function on the right-hand side of (5.3) is continuous in (s,t) e {0,1]".
. By Proposition 4.2 for every h ¢ LZ([O,l]p_l) Ep h is a nuclear operator on
1]
) 2 . 2 p-1
1.°[0,1]. Hence for every h ¢ L7([0,1] )
<trf ,h> = Trace F )
p’ ¢ p,h
= 1 -1 + -
[-- = f 2 “<f (*,s,s) + f (*,s,8),h(*)>ds
b~ O P p
>~
\.
. = <g ,h>
gp

(cf. e.g. Theorem 3.4.4 [2]). Proposition 5.1 and Theorem 4.1 complete the

proof . D

1 .
Example 5.3. In Example 3.4 we showed that }'OHn(B(t),t)*dB(t) exists and
we evaluated “te integral. Since in this case the assumptions of Proposition 5.1
R are satisfied, Proposition 5.2 provides an alternative way of evaluation of

1
fOHn(B(t) ,t)*dB(t). Using Proposition 5.2 and Theorem 1.1, Chap. 1II in [4] we get
k- 1 1
o JH (B(t),t)*dB(t) = {H_(B(t),t)edB(t)

' o™ o "

1 1

= [H_(B(t),0)dB(t) + & [d<H (B(s),s),B(s)-
o " 20 n
v 1
- - L ' n :
2 =~ B BLLD + 5 éun_](n(s),s)ds.
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Remark 5.4. The assumptions of Proposition 5.1 do not guarantee the
existence of f{*dB. Indeed, it is well-known that there exists a continuous
symmetric kernel k:[O,l]2 -+ R such that the corresponding integral operator
is not nuclear (cf. e.g. [2], p. 124). Put §(t) = L;k(s,t)dB(s). Then the
assumptions of Proposition 5.1 are satisfied, but by Theorem 3.3 fi*dB does

not exist.

Below are given simple examples of Gaussian processes for which the
Fisk-Stratonovich integral exists while the series expansion (l1.1) fails to
converge.

Example 5.5. [“B(l-t)odB(t) = BZ(X) + 2/% B(L-t)dB(t), but
Example 5.5. [g 5 1

2
féB(l-t)*dB(t) does not exist (cf. Example 3.5).

Proof. Indeed, it is easy to check that

0 2.1, .1
L2 (BUL-t, ) +B(I-t)][B(t)-B(t, )] > B°() + [B(L-t)dB(1),
j=1 ~ i N i- 1
2
and
I 27 B-t, ) +B(L-t)](B() -B(t, )] > [B(1-t)dB(t)
j=j0+l J J J J 1

2

in LZ(Q) as mesh(m) ~ 0, where 7 = {to,..., tn} is a partition of [0,1] and

. R
ig = maxi{i: Lj‘fé}.

Example 5.6. Let 7 (t), te [0,1] be a non-anticipating stochastic process

given bv




Then f(l)é,(t)odB(t) = fiB(t-;‘)dB(t), while fég*dB does not exist.

2
Proof. 1Indeed, it is elementary to check that

2 (E(r) - £(t, ) (B(t,) -B(t, D) ~ 0 in Lz(u) as mesh(m) »> 0, which

j=1 h| j-1 3 j-1

implies that the Fisk-Stratonovich integral exists and is equal to the ordinary
Ic/c; integral of /.

On the other hand £(t) = f(l)f(s,t)dB(s), where f(s,t) =1 if OSSS';' and

s + %s t<1 and = 0 otherwise. Hence f is given by
[ 1 -l<
2 1fOSsszands+2-t51
¥ o 1 1
f(s,t) = = 1f-2-SsSl andOStSs-i

0 otherwise

Consider the sequences {¢>n} and {wn} of orthonormal vectors in L2[0,1] given

by
Qn(t) = cos 4Tnt, O0<st<1l
and
sin 4Tn(e+3) if O <t <=
f 2 2
wn(t) = {
0 othervise .
Then
1
2 1
Fo b= 3 [ (] 1 (s)ds)e (D)t
nonon 26 0 t+—l- n n
2
LS
321n '
n

i3
1

et
.
4

|

o

14

.""".f .vb. e .
i \J " A u » - L

]
Kl
P

.

0. g e,
A L'y : .
bola : -
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which completes the example.

Intuitively speaking, the existence of the Fisk-Stratonovich integral re-
quires some kind of continuity of the process £ while conditions for fé&*dB
are of a different nature. Hence it is also easy to give an example ol a pro-

cess & for which, conversely, f&*dB exists but f&odB does not exist.

Example 5.7. Let A be a dense Borel subset of [0,1] such that
0<m(A) <L. Put $(t)=1,(t), £(s,t) = w(s)P(t) and E(t) = [£(s,t)dB(s) =
(IéWdB)W(t)- Clearly F¢=F¢ = <y ¢>y 1is nuclear, while S”= 0 1if

m = { .y tn} c [0,1]\A and STT = (féde)B(l) if T ¢ A, where STT is defined

s
by (5.1). Therefore f&odB does not exist.

Proposition 5.2 shows the equality of both integrals f€°dB and f&*dB
under certain additional assumptions. This is an open question if the exist-
ence of both integrals suffices for their equality.

Examples 5.5 and 5.6 indicate that the existence of the series expansion
(1.1) is a quite strong property of the process ;. Below are given certain
Sobolev-space type conditions, similar to those proposed by Kuo and Rusek [6],
which imply the existence and equality of both integrals, f&odB and f&*dB.

Since the proof in [6] seems to contain some gaps and the final condition differs from
ours in the value of a coefficient (p! instead of (p+1)!), we present a com-
plete proof of this result. Moreover our proof does not use the theory of
Sobolev spaces, which makes it more elementary.

In what follows below

+
fp(sl,,..,sp,t) fp(sl,...,sp_l,spAt,sth)

and

f (S,,.00.,5 4t) f (s
p

1 > > 128

,8 Vt,s At).
P P

p-1
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Theorem 5.8. Let & be given by (4..) and (4.2), where f0 18 continuous.

Assume that for some a > 7

2 2 S Y 2, +
= U u
Ma({fp}) HfO“LZ(T) + pZl(p+1)'[ 0t(fp) + 0L(fp)]

ts finite, where U;(-) is defined in Theorem 1.3. Then both integrals féiodB

and fé&*dB exist, they are equal a.s. and (4.4) holds. Moreover,

IU *dBII < cM ({f£ ],
L2 @) S

where C depenas only on a.

- + ~ - +
Proof. Since f + f =2f and £ 1 -1 + f1 -1 = f , we get
- P P 1P xD_ P P D, P

Ui(fp) l[Uz(f+) + U (f “)]. In view of Theorem 4.3 fE*dB exists. Using

the same argument as in the proof of Theorem 4.3 we have

(5.4) £ (o,t) = ) (+)x (©)
P nezZ p,
in L2([O,l]p+l), where x_(t) =exp(i2mnt) and £ _|lc_ || ) <cU (). A
n n p,n L (Tp) a p

similar expansion we have for f+ with ¢ _ replaced by c+ in (5.4).
P p,n p,n

Let T = {to,..., tk} be a partition of [0,1]. We have

T
s

where Sp is defined by (5.1) with £ replaced by Ep. Using (5.2) and (5.4)

we get

Ta
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5.8
Spy T Ipﬂ(fp,") ¥ pIp-l(gp,ﬂ)’
where
e o 12
£ (*,t) = c. (Wi2T 1 (e, Ix (£, ) +1 (o,edx (€)%, (t)
P, nez P 521 TP l*D_ j-1""n"75-1 Tp-lxD_ Fhargt e st
+ ko
+ ) e (Y2 (s,t, Ix (£, )+1 (ot dx ()11 (t)
nez p’n j=l Tp 1XD J-l n J—l Tp_lxD J n J J 1’ ]
+ +
- - + +
= Y el (v (L) + ] el (g _(5,0),
neZ p,n n,m neZ p,n n,m
and
-1 1_ -
gp,ﬂ(sl’ ’Sp—l) = 2 nZz; £C (sl,...,sp_l,s)xn’n(s)ds
+ 2_1 Z fc ] s) M (s)ds
neZ 0 1’777 p-1? Xn,TT )

- + , ‘-
Here xn,ﬂ(t) = xn(tj_l) and Xn,ﬂ(t) = xn(tj) if t € (tj_l,tj], j=1,..., k.

, - + .
Since Iwn,ﬂl < 1 and iwn,ﬂ‘ < 1 we obtain

- + + -
< < clU (f u (f
‘pr’ﬂlle(Tp+l) < E(HCP’HHLZ(TP) + HCP’“HLZ(TP)) CLU,(E) + U (C »

and by Schwartz inequality

e, |l o< Jeo nCosixg (s)dsl| _
p,T LZ(TP l) neZ T p,n n,TT LZ(TP l)

- +
- w27 TN e (Chong (sl
L nezZ TP n,T Lz(Tp l)
-
1 _ +
e 27 ] (ke + e M, 00
- nz Phiay P tah)
e e T
B G G A SV I b




-1 + -
s C2TU (6 + Um(fp)].

(- Therefore
(
- r r r
# 2 2 2
3 Y s Ws2llpr & O +2l}pr (g D
v 51T +1 Ll -1 o
- p=q " p=q P70 P p=q¢ 7" P
: 2 2
, c2) e+l N2+ s 1%
A = P> P>
' pP=q
2 ¢ 2, + 2, -
<3¢ ) (p+ DIUSED) +U(EDN]I» 0
o p a p
P=q
as p,q > «©, uniformly in all finite partitions 7 of [0,1].
To complete the proof it is enough to show that for each p 2 1,
2
S -1 (£) + pl trf in L7(2) as mesh (m) + 0. To this end we shall
_ oon ™ Topy(E) +p1_ (erf ) @ (m .
: show that |[f - f || > 0and ||g. _- trf_ || ~ 0 as mesh (1) > 0. ~
ps™ p P,T p '
Using (5.4) we have j
‘ L
' ]
e -l < ) e @ -1 x 3
i 2 +1 T -1 2 +1 ']
Ps PLYTP™) ez P00 W ™ % Lo )
r
+ +
+ 1 el o -1 ol >0 ;
- +
: nez P mT 4P lXD+ n 2Pt 3
) 1
| 1
as mesh (m) > 0 by the Dominated Convergence Theorem. i
€ Since b
- trf = trf = 2_ltrf- + Z-ltrf+ :
P p P P X
- .
S . . . 1
and both fp and fp are symmetric in the last two variables we obtain -
tef = ) s)f (+,s,t ¥ (t)dsdt
b L F{an( YE (8,00 ()
" ]
\ = ) fe (+,8)x _(s)ds,
~ nez 0 PO n
YA S e I LT e e e T L Rl
t.. A -1 _-'? -'.: : . ‘;.: A;.“.‘.‘)“ : e N R e ‘,-{- P S L R ot . LT AT S



where a denotes the complex conjugate to a. A similar expression we obtain

for trf+.
P
Finally
_1 l
- trf <2 T (e - -
“gp L P“LZ( p-ly nzzuécp,n( ) Xy (8 "n(s))dsan(Tp-l)
' + 27 ) I|}C+ L) 0¢ () - x (s))dsl||
- nez 0 P°7 . n L2 Pt
hi.t 1 _ _
) <270 ] el |l I . = x|l
h nez. Pt L2(rPy M7 "2 ‘
hlt: |
- -1 + + !
T I T T N I |

nez P o1 L(T)

S
PRI

as mesh (1) - 0 by the Dominated Convergence Theorem. The proof of Theorem

o
L b

5.8 is complete. 0O

It occurs that a simple condition Na(ﬁ) < o for some a > %, given in

Theorem 4.4 implies not only the existence of f&*dB but also the integrability .

of £ in the Stieltjes sense.

Theorem 5.9. Asswne that for some o - Na(i) < o, where Nl(i) 18 de-

o1
2’
fined in Theorem 4.4. Then for every partition T = {to,..., tk} of 10,1]

and any choice t; € [tj_l,tj], j=1,..., k,

J

wv

*

1}
Ho~—x

1E(t3‘)[B(tj) - B(tj_l)]

convergesg to féE*dB as mesh(m) -+ 0.

Proof. By (4.8), t » fp(',t) has absolutely convergent Fourier series,
i.e. fp can be presented in the form similar to (5.4). Starting from this
representation and following essentially all the steps in the proof of

Theorem 5.8 we complete the proof of Theorem 5.9. 0
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